Role of the angiotensin AT(1) receptor in rat aortic and cardiac PAI-1 gene expression.
نویسندگان
چکیده
Although the renin-angiotensin system has been implicated in increasing plasminogen activator inhibitor-1 (PAI-1) expression, the role of the angiotensin type 1 (AT(1)) receptor is controversial. This report examines the effects of angiotensin peptides, angiotensin-converting enzyme inhibition, and AT(1) antagonism on rat aortic and cardiac PAI-1 gene expression. In vitro, angiotensin (Ang) I, Ang II, and angiotensin Arg(2)-Phe(8) (Ang III) were potent agonists of PAI-1 mRNA expression in rat aortic smooth muscle cells (RASMCs), and stimulation of PAI-1 by these peptides was blocked by the AT(1) antagonist candesartan. Angiotensin Val(3)-Phe(8) (Ang IV) and angiotensin Asp(1)-Pro(7) (Ang [1-7]) did not affect PAI-1 expression in RASMCs. In neonatal rat cardiomyocytes, Ang II increased PAI-1 mRNA expression by 4-fold (P<0.01), and this response was completely blocked by AT(1) receptor antagonism. Continuous intrajugular infusion of Ang II into Sprague-Dawley rats for 3 hours increased aortic and cardiac PAI-1 mRNA expression by 17- and 9 fold, respectively, and these Ang II responses were completely blocked by coinfusion with candesartan. Aortic and cardiac PAI-1 expressions were compared in spontaneously hypertensive rats and Wistar-Kyoto rats. PAI-1 expression in the aorta and heart from spontaneously hypertensive rats was 5.8-fold and 2-fold higher, respectively, than in control Wistar-Kyoto rats (P<0.05). Candesartan treatment for 1 week reduced aortic and cardiac PAI-1 expression in spontaneously hypertensive rats by 94% and 72%, respectively (P<0.05), but did not affect vascular PAI-1 levels in Wistar-Kyoto rats. These results demonstrate a role for the AT(1) receptor in mediating the effects of Ang II on aortic and cardiac PAI-1 gene expression.
منابع مشابه
Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling.
OBJECTIVE To test the hypothesis that pharmacological plasminogen activator inhibitor (PAI)-1 inhibition protects against renin-angiotensin-aldosterone system-induced cardiovascular injury, the effect of a novel orally active small-molecule PAI-1 inhibitor, PAI-039, was examined in a mouse model of angiotensin (Ang) II-induced vascular remodeling and cardiac fibrosis. METHODS AND RESULTS Unin...
متن کاملPlasminogen System Expression in Vascular Smooth Muscle Cells : Role of cGMP in the Regulation of the Natriuretic Factors and Nitric Oxide Suppress Plasminogen Activator Inhibitor-1
Increased expression of plasminogen activator inhibitor-1 (PAI-1) has been reported in atherosclerotic and balloon-injured vessels. Little is known regarding the factors and mechanisms that may negatively regulate PAI-1 expression. In this report, the effect of cGMP-coupled vasoactive hormones, including natriuretic factors and nitric oxide, on the regulation of PAI-1 expression in vascular smo...
متن کاملThe Effect of Fatty Liver Disease on the Expression of RXFP1 and CTGF Genes in Cardiac Tissue of Wistar Rats
Background & Aims: Performing physical activity and having a healthy body is one of the most essential life needs of people with fatty liver. In recent years, studies have been performed on the relationship between fatty liver and arthrosclerosis. The results of these studies indicate the relationship between the Non-alcoholic fatty liver and arthrosclerosis of coronary artery disease. Non-alco...
متن کاملChronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat
Background: Overexpression of lectin-like low density lipoprotein (LOX-1) receptor plays an important role in hyperglycemia-induced vascular complications such as atherosclerosis. Based on the beneficial effects of exercise on preventing cardiovascular complications of diabetes, we aimed to examine the protective effects of aerobic exercise on expression of LOX-1 receptor and production of free...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 10 شماره
صفحات -
تاریخ انتشار 2000